1. Compton MM: A biochemical hallmark of apoptosis: Internucleosomal degradation of the genome. Cancer Metast Rev 11:105-119, 1992.

2. Kerr JFR

3. Magno G, Joris I: Apoptosis, oncosis y necrosis. An overview of cell death. Am J Pathol 146: 3-16, 1995.

4. Wyllie AH: Apoptosis and the regulation of cell numbers in normal and neoplasic tissues: An overview. Cancer Metast Rev 11:95-113, 1992.

5. Wyllie AH, Arends MJ, Morris RG, Walker SW, Evan G: The apoptosis endonuclease and its regulation. Seminars immunol 4:389-398, 1992.

6. Arends MJ, Morris RG, Wyllie AH: Apoptosis: the role of endonuclease. Am J Pathol 136:593-608, 1990.

7. Gong J, Traganos F, Darzynkiewicz Z: A selective procedure for DNA extraction from apoptotic cells applicable for gel electroforesis and flow cytometry. Anal Biochem 218: 314-319, 1994.

8. Castedo M, Hirsch T, Susin SA, Zamzani N, Marchetti P,Macho A, Kroemer G: Sequencial adquisition of mitochondria and plasma membrane alterations during early lymphocyte apoptosis. J immunol 157:512-521, 1996.

9. Darzynkiewicz Z, Traganos F, Staiano-Coico L, Kapuscinski J, Melamed MR: Interactions of rhodamine 123 with living cells studied by flow cytometry. Cancer Res 42:799-806, 1982.

10. Hedley DW, McCulloch EA: Generation of oxigen intermediates after treatment of blast of acute myeloblastic leukemia with cytosine arabinoside: Role of Bcl-2. Leuemia 10:1143-1149, 1996.

11. Lizard G, Fournel S, Genestier L, Dgedin N, Chaput C, Flacher M, Mutin M, Panaye G, Revillard JP: Kinetics of plasma membrane and mitochondrial alterations in cells undergoing apoptosis. Cytometry 21:275-283, 1995.

12. McConkey DJ, Nicotera P, Hatzell P, Bellomo G, Wyllie AH, Orrenius S: Glucocorticoids activate a suicide process in thymocytes through an elevation of cytosolic Ca 2+ concentration. Arch Biochem Biophys 269:365-370, 1989.

13. Piacentini M, Fesus I, Farrace MC, Ghilbelli L, Piredda I, Meline G: The expression of “tissue” transglutaminase in two human cancer cell lines is related to the programmed cell death (apoptosis). Eur J Cell Biol 54:246-254, 1995.

14. Endersen PC, Prytz PS, Aarbakke J: A new flow cytometric method for discrimination of apoptotic cells and detection of their cell cycle specificity through staining of F-actin and DNA. Cytometry 20:162-171, 1995.

15. Meredith JE Jr, Fazeli B, Scgwartz MA: The extracellular matrix as a cell survival factor. Mol Biol Cell 4:953-961, 1993.

16. Frisch SM, Francis H: Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124:619-626, 1994.

17. Rytömaa M, Martins LM, Downward J: Involvement of FADD an caspase-8 signalling in detachment-induced apoptosis. Curr Biol 9:1043-1046, 1999.

18. Majno G, Joris I: Apoptosis, oncosis and necrosis. An overview of cell death. Am J Pathol 146:3-16, 1995.

19. Wyllie, A. H., Kerr, J. F. & Currie, A. R. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68: 251–306, 1980.

20. Alnemri, E. S. et al. Human ICE/CED-3 protease nomenclature. Cell 87:171 ,1996.

21. Budihardjo, I. , Oliver, H., Lutter, M., Luo, X. & Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15, 269–290 (1999).

22. Cikala, M., Wilm, B., Hobmayer, E., Bottger, A. & David, C. N. Identification of caspases and apoptosis in the simple metazoan Hydra. Curr. Biol. 9, 959–962 (1999).

23. Earnshaw, W. C., Martins, L. M. & Kaufmann, S. H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383–424 (1999).

24. Cerretti DP, Kozlosky CJ, Mosley B, Nelson N, Van Ness K, Greenstreet TA, March CJ, Kronhein SR, Druck T, Cannizzaro LA, Huebner K, Black RA. Molecular cloning of the interleukina-1 beta converting enzyme. Science 256:97-100, 1992.

25. Thornberry NA, Bull HG, Calaycay JR, Chapman KT et al. A novel heterodimeric cysteine protease is required for interleukina 1 beta processing in monocytes. Nature 356:768-774, 1992.

26. Stennicke HR, Salvensen GS. Properties of caspases. Biochim Biophys Acta 1387:17-31, 1998.

27. Hofmann K. The modular nature of apoptotic signaling proteins. Cell Mol Life Sci 55:1113-1128, 1999.

28. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated Dnasa that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43-50, 1998.

29. Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein that function downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175-184.

30. Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, McGarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ, Williams LT. Caspase-3-generated fragmente of gelsolin: effector of morphological change in apoptosis. Science 278:294-298, 1997.

31. Lee N, MacDonald H, Reinhard C, Halenbeck R, Roulston A, Sji T, Willian LT. Activation of hPAK65 by caspase cleavage induces some of the morphological and biochemical changes of apoptosis. Proc Natl Acad Sci USA 94:13642-13647, 1997.

32. Martín SJ, O'Brien GA, Nishioka WK, McGahon AJ, Mahboubi A, Saido TC, Green DR. Proteolysis of fodrin (non-erythroid spectrin) during apoptois. J Biol Chem 270:6425-6428, 1995.

33. Martín SJ, Finucane DM, Amarante-Mendes GP, O'Brien GA, Green DR. Phosphatidylserine externalization during CD95-induced apoptosis of cells and cytoplast requires ICE/CED-3 proteasa activity. J Biol Chem 271:28753-28756, 1996.

34. Earnshaw, W. C., Martins, L. M. & Kaufmann, S. H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68:383–424, 1999.

35. Nicholson, D. W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6:1028–1042, 1999.

36. Roy N, Deveraux QL, Takahashi R, Salvensen GS, Reed JC. The c-IAP1 and c-IAP2 proteins are direct inhibitors of specific caspases. EMBO J 16:6914-6925, 1997.

37. Deveraux QL, Takahashi R, Salvensen GS, Reed JC. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388:300-304, 1997.

38. Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula SM, Alnemri ES, Salvensen GS, Reed JC. IAPs block apoptotic event induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 17:2215-2223, 1998.

39. Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917-921, 1997.

40. Deveraux QL, Reed JC. IAP family proteins – suppressors of apoptosis. Genes Dev 19:239-252, 1999.

41. Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288:874-877, 2000.

42. Rich T, Allen RL, Wyllie AH. Defying death after DNA damage. Nature 407:777-783, 2000.

43. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature 407:802-809, 2000.

44. Li P et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479-489, 1997.

45. Adams JM & Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 281:1322-1326, 1998.

46. Antonsson B & Martinou JC. The Bcl-2 protein family. Exp. Cell Res. 256:50-7, 2000.

47. Reed JC. Double identity for proteins of the Bcl-2 family. Nature 387:773-776, 1997.

48. Du C, Fang M, Li Y, Li L & Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33-42, 2000.

49. Verhagen AM et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43-53, 2000.

50. Gross A et al. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274:1156–1163, 1999.

51. Li H, Zhu H, Xu CJ & Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501, 1998.

52. Wolter KG et al. Movement of Bax from the cytosol to mitochondria during apoptosis. J. Cell Biol. 139:1281–1292, 1997.

53. Puthalakath H, Huang DC , O'Reilly LA, King SM & Strasser A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol. Cell 3:287–296, 1999.

66. Jaattela M. Escaping cell death: survival proteins in cancer. Exp. Cell Res. 248:30–43, 1999.

67. Xanthoudakis S & Nicholson DW. Heat shock proteins as death determinants. Nature Cell Biol. 2, E163–E165, 2000.

68. Muzio M. et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85:817–827, 1996.

69. Thome M et al. Viral Flice-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386:517–521, 1997.

70. Hu S et al. A novel family of viral death effector domain-containing molecules that inhibit both CD-95 and tumor necrosis factor receptor-1-induced apoptosis. J. Biol. Chem. 272:9621–9624, 1997.

71. Bertin J et al. Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fas and TNFR1-induced apoptosis. Proc. Natl Acad. Sci. USA 94:1172–1176, 1997.

72. Yeh WC et al. Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12:633–642, 2000.

73. Gross A et al. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274:1156–1163, 1999.

74. Yin XM et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400:886–891, 1999.

75. Darzynkiewicz Z, Juan G, Li X, Gorczyca W, Murakami T, Traganos F. Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 1997;27:1-20.

76. Majno G, Joris I. Apoptosis, oncosis and necrosis. An overview of cell death. Am J Pathol 146:3-16, 1995.


Página principal