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I. Introduction

T IS NO EXAGGERATION to consider ex-
pected utility theory the major para-
digm in decision making since the Second
World War. It has been used prescrip-
tively in management science (especially
decision analysis), predictively in finance
and economics, descriptively by psycholo-
gists, and has played a central role in theo-
ries of measurable utility. The expected
utility (EU) model has consequently been
the focus of much theoretical and empiri-
cal research, including various interpreta-
tions and descriptive modifications as to
its mathematical form. This paper reviews
the major empirical studies bearing on the
EU model. Although previous reviews of
decision making have covered some of this

research (e.g., Ward Edwards, 1961; Gor-
don Becker and Charles McClintock,
1967; Amnon Rapoport and Thomas
Wallsten, 1972; Paul Slovic et al., 1977;
Robert Libby and Peter Fishburn, 1977;
Charles Vlek and Willem Wagenaar, 1979;
and Hillel Einhorn and Robin Hogarth,
1981), few have attempted to organize the
relevant evidence around the different
purposes served by the EU model. Simi-
larly, there has been no systematic exami-
nation of the way various descriptive ex-
tensions of expected utility theory relate
to their progenitor, or of how the current
normative variant differs from its histori-
cal roots.

In addressing these issues, the present
paper first discusses various EU modifica-
tions. Special attention will be given to
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the types of cardinal utility used in various
models, as well as the manner in which
probabilities are incorporated. Thereafter
four conceptually different purposes of
the EU model are identified, namely: de-
scriptive, predictive, postdictive and pre-
scriptive. The types of evidence relevant
in testing the model’s adequacy for each
purpose are discussed. Building on these
distinctions, the empirical evidence is
then divided into four clusters centering
around tests of the axioms, field research,
information processing studies, and recent
findings on context effects. Although the
review covers considerable ground, its fo-
cus is on major studies; it does not provide
a comprehensive discussion of all relevant
research. Moreover, the focus is on indi-
vidual decision making rather than the be-
havior of firms or markets. It shows that
at the individual level most of the em-
pirical evidence is difficult to reconcile
with the principle of EU maximization.
Whereas the simplicity of EU theory, es-
pecially its mathematical tractability, may
make it a very attractive model for pur-
poses of social aggregation, its structural
validity at the individual level is question-
able. As such, a separate section is devoted
to important behavioral decision aspects
that are currently ignored in EU theory.
Finally, the discussion section synthesizes
the divergent strands of research touched
upon, with an eye to future roles of the
EU model.

II. Expected Utility Variants

Expected utility models are concerned
with choices among risky prospects whose
outcomes may be either single or multi-
dimensional. If we denote these various
(say n) outcome vectors by ¥; and denote
the n associated probabilities by p; such

that ii »i = 1, we then generally define
=1

an EU model as one which predicts
or prescribes that people maximize
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EnF(p,-)U(fi). The key characteristics of
i=1

this general maximization model are: (1)
a holistic evaluation of alternatives,! (2)
separable transformations on probabilities
and outcomes, and (3) an expectation-type
operation that combines probabilities and
outcomes multiplicatively (after certain
transformations).

Within this general EU model different
variants exist depending on (1) how utility
is measured, (2) what type of probability
transformations F(-) are allowed, and (3)
how the outcomes x; are measured. In this
section we examine some of the major
variants, including their extra-mathemati-
cal interpretations. We start with some
background information on EU theory as
traditionally understood. Thereafter the
neoclassical notion of cardinal utility is
compared with the modern day one. Spe-
cial attention is given to the ways in which
EU theory can be cardinal. Finally the
concept of probability is discussed, both
in terms of its ontology and its treatment
in various EU models. The section con-
cludes with a summary table listing the
major EU variants.

a. Background Information

The mathematical form of expected
utility theory goes back as far as Gabriel
Cramer (1728) and Daniel Bernoulli
(1738), who sought to explain the so-called
Petersburg paradox. The issue they ad-
dressed was why people would pay only
a small dollar amount for a game of infinite
mathematical expectation. This well-
known game involves flipping a fair coin
as many times as is necessary to produce
“heads” for the first time. The payoff of
this experiment depends on the number

1 A holistic model is one in which the attractiveness
of an alternative is evaluated independently of the
other alternatives in the choice set. In contrast, a
non-holistic or decomposed model directly compares
alternatives, e.g., one dimension at a time, without
assigning a separate utility level to each.
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of tosses required to get heads. Say this
number is n, the payoff will then be $27,
which means the game has many possible
outcomes, namely: $2, 4,8, . . . , 2", with
probabilities ¥, Y4, ¥, . . . , (Y2)*, respec-
tively. Interestingly, the expected mone-
tary value (EV) of this gamble is infinite,

since 3 (%)"27 = o,
n=1

To explain why most people value this
infinite EV game below $100, or even $20,
Bernoulli proposed that people maximize
expected utility rather than expected
monetary value. The utility function U(x)
he proposed was logarithmic, exhibiting
diminishing increases in utility for equal
increments in wealth.2 Bernoulli then pro-
ceeded to show that for a logarithmic
function the game’s expected utility, i.e.,
3(¥%)"log.(27), is indeed finite.? However,
he did not address the issue of how to mea-
sure utility, nor why his expectation prin-
ciple would be rational. As such, Bernoul-
li’s theory is mostly a descriptive model,
even though the expectation principle at
the time may have enjoyed much face va-
lidity normatively. It was not until John
von Neumann and Oskar Morgenstern
(1944) that expected utility maximiza-
tion was formally proved to be a rational
decision criterion, i.e., derivable from
several appealing axioms. In their own
words they “practically defined numeri-
cal utility as being that thing for which
a calculus of expectations is legitimate”

2The exact function proposed by Bernoulli was
U(x) = blog[(a + x)/a]. Note that dU(x)/dx =
b/(a + x), which is inversely proportional to wealth.
Also, d2U(x)/dx? < 0. Bernoulli’s logarithmic func-
tion was later suggested by Gustav Fechner (1860)
for subjective magnitudes in general.

3 A proof of the convergence of this infinite series
is offered in my book on expected utility experiments
(1980, p. 12). Note that the certainty equivalence
of this game, i.e., the amount ce for which U(ce) =
2(%)"U(2"), will be finite for many other concave
utility functions as well, although not for all. The
same holds for the maximum bid (m) one would pay
for the Petersburg game, which is determined from
the equation U(0) = 2(%)"U(2" — m).

(1944, p. 28). In this sense, von Neumann-
Morgenstern (NM) utility theory is quite
different from Bernoulli’s conceptualiza-
tion. Moreover NM utility applies to any
type of outcomes, money being a special
case.

Specifically, von Neumann and Mor-
genstern proved that five basic axioms im-
ply the existence of numerical utilities for
outcomes whose expectations for lotteries
preserve the preference order over lotter-
ies: i.e., greater expected utility corre-
sponds to higher preference. Their utility
function is unique up to positive linear
transformations, meaning that if the func-
tion U(x) represents a person’s risk pref-
erences then so will U*(x) if and only if
U*(x) = aU(x) + b for numbers a > 0
and b. Jacob Marschak (1950) reformu-
lated the NM axioms and proof, and pro-
posed them as a definition of rational be-
havior under risk. In light of later
discussions, the NM axioms are informally
stated below.

1. Preferences for lotteries L; are
complete and transitive. Com-
pleteness means that for any
choice between lotteries L, and L,
either L, is preferred to L, (de-
noted Ly L), Ly L, orbothare
equally attractive. Transitivity im-
plies that if L1 Lz and L2 L3
then L; L3 (where denotes “at
least as preferred as™).

2. If x4 x2 x3, then there exists
some probability p between zero
and one such that the lottery

1f<x1 is as attractive as receiv-

P,
ing x, for certain.

3. If objects x; and x, (being either
risky or riskless prospects) are
equally attractive, then Ilottery

p__x, Xy .
ﬁxa and lottery #xs will

also be equally attractive (for any
values of p and x3).
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X1

P
4. Consider the lotteries L1§
2
q
and L, 1< " which differ only

2

in probability. If x; >x, then the
first lottery (L,) will be preferred
over the second (Lj) if and only
if p > q.

5. A compound lottery (i.e., one
whose outcomes are themselves
lotteries) is equally attractive as the
simple lottery that would result
when multiplying probabilities
through according to standard
probability theory. For example,
lottery

1-p X3
“1'_<TX4
should be as attractive as

rq X1
pa—aq)—

(1=p)r

(1~p) (=724

The above axioms are sufficient to guar-
antee that there exists a utility index such
that the ordering of lotteries by their ex-
pected utilities fully coincides with the
person’s actual preferences.* Note that
utility, in the NM context, is used to repre-
sent preferences whereas in neoclassical
theory it determines (or precedes) prefer-
ence. Since U(x) is unique up to positive
linear transformation one is free to choose

4 A highly readable proof of this important theo-
rem was provided by William Baumol (1972, p. 548-
51). Alternative sets of axioms, resulting in the same
general theorem, have been presented by Israel N.
Hernstein and John Milnor (1953), Leonard Savage
(1954), Duncan Luce and Howard Raiffa (1957), John
Pratt, Raiffa and Robert Schlaifer (1964) and Peter
Fishburn (1970).
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both the origin and the unit of measure-
ment of the utility scale. For example, we
may arbitrarily place the origin at $10 (i.e.,
U(10) = 0), and set U(10,000) equal to say
100 utiles. Given these two reference
points, the utility index is constructed
from such simple questions as: “What
amount for certain is equally attractive as
a 50-50 lottery offering $10 or $10,000?
Say the answer is $x*, we then compute
U(x*) as being equal to .5U(10) +
.5U(10,000) = 50 utiles. As long as the ref-
erence lottery contains amounts for which
the utilities are known, new utility points
can be obtained through which a utility
function may then be interpolated.

An important concept in EU theory is
that of risk aversion. If some gamble is
less (or more) preferred than its expected
monetary value for sure, the preference
is said to be risk-averse (or risk-seeking).
A concave utility function implies risk-
averse preferences for lotteries within the
range of concavity: i.e., their certainty
equivalences will be less than their ex-
pected monetary values. Kenneth Arrow
(1971) and John Pratt (1964) proposed as
a local measure of risk-aversion for U(x)
the negative ratio of the second to first
derivative, i.e., —U"(x)/ U’ (x). This mea-
sure is invariant under linear transforma-
tion, and assumes a constant value for lin-
ear and exponential utility functions. As
such it captures the important EU prop-
erty that risk preferences derived from
exponential (or linear) utility functions are
not affected by changes in the persons
wealth position.’

5 Further discussions of expected utility theory,
particularly from an applied perspective, can
be found in Raiffa (1968) and in Chapter 4 of
Ralph Keeney and Raiffa (1976). In subsequent
chapters these authors extend the one-dimensional
theory to n-dimensions, in which case the deter-
mination of U(xy,xs, . . . , x») is considerably more
complicated. Also, the concept of risk-aversion is less
well-defined in the multiattribute case (Scott Richard,
1975).
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b. Types of Cardinal Utility

As Peter Fishburn (1976) has noted, the
concept of cardinal utility has psychologi-
cal, empirical as well as measurement-the-
oretic aspects which together with such
related terminology as “measurable,” “ad-
ditive,” “determinate,” “intensive,” and
“linear” utility has given rise to considera-
ble confusion as to its precise meaning.
The term “cardinal utility” goes back to
John R. Hicks and R. G. D. Allen (1934)
who argued that only ordinal preference
was needed in economic theory, thereby
dispensing with neoclassical utility (Vivian
Walsh, 1970). Cardinal utility in the neo-
classical context refers to strength of pref-
erence, i.e., to statements about intensity
as well as direction of preference. From
a measurement-theoretic viewpoint, car-
dinal utility has a rather different mean-
ing, referring to the allowable transforma-
tions of the underlying measurement
scale. If the scale is unique up to at least
linear transformation, it constitutes cardi-
nal or so-called strong measurement
(S. S. Stevens, 1946). Common examples
are temperature and weight measures
which constitute interval and ratio scales
respectively. From a measurement per-
spective NM utility theory is cardinal in
that its utility scale has interval properties.
However, from a preference perspective,
NM utility theory is ordinal in that it pro-
vides no more than ordinal rankings of
lotteries.

The cardinal nature of NM theory must
thus be interpreted -carefully. Even
though NM utility functions are interval
scales, implying that the ratios of utility
differences are invariant under linear
transformations, it does not follow that if
X1 >%X2 >%3 >x4 and u(x1) — u(x2) > u(xs)
— u(x,), the change from x to x; would
be more preferred than the change from
x4 to x3 (Duncan Luce and Raiffa, 1957,
p. 32). Thus NM utility should not be in-
terpreted as measuring strength of prefer-
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ence under certainty, being quite differ-
ent in this regard from neoclassical
cardinal utility (George Stigler, 1950).6
One reason is that preferences among lot-
teries are determined by at least two sepa-
rate factors; namely (1) strength of pref-
erence for the consequences under
certainty, and (2) attitude toward risk. The
NM utility function is a compound mix-
ture of these two, without direct resort
to interval comparisons or strength of
preference measures. As a preference the-
ory, it is wholly ordinal. Nevertheless it
implicitly assumes that a neoclassical type
of utility exists, otherwise it would not be
possible psychologically to determine the
certainty equivalence of a lottery. An in-
teresting analysis as to the connection be-
tween ordinal and cardinal utility was of-
fered by Eugene Fama (1972). Since some
economists consider intensity of prefer-
ence meaningless (Charles Plott, 1976, p.
541), putatively because it cannot be mea-
sured from revealed preferences, it merits
closer examination.

One approach is to view strength of
preference as an intuitive psychological
primitive. For instance, most people
would consider it meaningful to say that
the increase in pleasure due to adding
milk to one’s coffee is of a lower magni-
tude than the pleasure increment associ-
ated with a sizable salary raise. Similarly,
someone might note that the last hour on
some trip was more tiring than the first.
Indeed, in psychological scaling experi-
ments subjects routinely make interval
comparisons involving such quantities as
loudness, weight, temperature, and
brightness (Stevens, 1957). Usually, sub-
jects’ perceptions of the interval differ-

¢ Consequently, the notion of marginal utility has
a rather different meaning in NM theory as well.
In classical economics marginal utility refers to plea-
sure increments under certainty. In NM theory it
refers to “the marginal rate of substitution between
x and the probability of winning the prespecified
prize of the standard lottery ticket” (Baumol, 1972,
p. 548).
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ences correspond very closely (in the
curve fitting sense) to the true underlying
scale, after appropriate logarithmic or
power transformations. The latter are nec-
essary as the human response system
tends toward relative rather than absolute
judgments (Gustav Fechner, 1860). It is
thus a small leap to presume a similar
judgment capability for strength of pref-
erence, even though objective verification
is not yet possible.

Gerard Debreu (1959), D. Scott and Pat-
rick Suppes (1958), Ragnar Frisch (1964),
Frantz Alt (1971), and others, proposed
various axiomatizations of such a strength
of preference measures under certainty,
which we shall denote by v(x). Its essential
property is that the function provides or-
dinal preference as well as an ordering
on differences (under certainty). Thus,
v(x1) > v(xs) implies that x; is preferred
to x2, and o(x1) — v(x2) > v(x3) — v(x4)
implies that the value difference between
x1 and x, is greater than that between
x3 and x4 (Where x3 is preferred to x,).
David Krantz, et al., (1971, pp. 145-50)
review the formal properties of this so-
called positive-difference structure. Oper-
ationally, it may rely on the so-called mid-
point scaling technique, which requires
respondents to split intervals into equally
valued increments (Warren Torgerson,
1958).

A different measurement approach is to
infer v(x) from revealed preferences, pro-
vided certain conditions hold. By intro-
ducing a second attribute, say y, it may
be asked how much of y, (the initial y
endowment) the respondent would give
up to go from x; to x;. From such willing-
ness-to-pay questions a multidimensional
interval-scaled function W(x, y, z) can be
constructed via conjoint measurement
(Luce and John Tukey, 1964), with z de-
noting the set of other relevant attributes.
If W(x, y, z) is separable in x, meaning
it can be written as f(v(x),w(y,z)), and if
8 W/bx is independent of y and z, then
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v(x) may be considered an intrinsic pref-
erence measure for x. These conditions
are met, for example, if W(x, y, z) is addi-
tive, i.e., expressable in the form o(x) +
wi(y) + wa(z). However, a direct empiri-
cal test that 8 W/8x is independent of y
and z may require another (i.e., non-
tradeoff) measure of strength of prefer-
ence (David Bell and Raiffa, 1979). If so,
we are back to our first approach, leaving
introspection as the only likely way out
of this vicious circle (Fishburn, 1970, p.
82). Various other operational measures
exist for intensity of preference, which
were recently examined by John Hauser
and Steven Shugan (1980). Their study
consists of theoretical and empirical analy-
ses, with a focus on marketing applica-
tions.

There are several advantages in distin-
guishing cardinal utility measures con-
structed under certainty, denoted v(x),
from those constructed under risk, de-
noted u(x). First, it emphasizes that there
exist different types of cardinal utility,
even within each category, which only
have to be related monotonically. (See
Amos Tversky, 1967, for empirical exam-
ples.) Second, by examining u(x) = f(v(x)),
an Arrow-Pratt type measure of intrinsic
risk aversion may be defined and empiri-
cally measured, namely —f"(v(x))/ f'(v(x))
(Bell and Raiffa, 1979). Third, the con-
struction of u(x) may be simplified by first
examining the nature of v(x), especially
in the case of multiattribute utility. For
example, Detlof von Winterfeldt (1979)
proved that u(xy,. . . , x,) must be either
linearly, logarithmically or exponentially
related to v(xy, . . . , x,) in case the for-
mer is additive and the latter multiplica-
tive (see also: James Dyer and Rakesh Sa-
rin, 1979a). Similar relationships between
riskless and risky cardinal utility were re-
cently examined by Bell and Raiffa (1979)
and Dyer and Sarin (1982) for one-dimen-
sional cases (see also: Sarin, 1982). Dyer
and Sarin (1982) proposed a fourth reason
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for separating v(x) and wu(x): namely,
group decision making. In an organiza-
tional context it may be desirable only to
have members’ inputs regarding their
v(x) functions, but not their risk attitudes
(which might be centrally determined).
Finally, cardinal utility under certainty
may be useful for welfare theory (Dyer
and Sarin, 1979b), although it seems to
suffer as well from impossibility theorems
(T. Schwartz, 1970).

The distinction between v(x) and u(x),
denoting cardinal preference scalings un-
der certainty and risk, respectively, is of-
ten overlooked or has been a source of
considerable confusion, even among ex-
perts. During the beginning of the 1950s,
The Economic Journal and Econometrica
published a variety of articles debating the
cardinality of NM utility (e.g., Herman
Wold, 1952 and Armen Alchian, 1953).
Amid considerable confusion, lucid analy-
ses were offered by Robert Strotz (1953),
Daniel Ellsberg (1954) and John S. Chip-
man (1960). Ellsberg compared how such
classical utilitarians as William Stanley Jev-
ons, Carl Menger, Leon Walras or Alfred
Marshall might have predicted choice un-
der risk with the approach taken by NM.
The difference lies in the way the utility
function is constructed: namely, under
certainty or risk. Which expectation
model will predict better is an empirical
question. An important difference, how-
ever, is that the E[v(%)] model has no nor-
mative justification other than its face va-
lidity, whereas the E[u(%)] model derives
from a set of appealing decision axioms.
It is my interpretation that Bernoulli pro-
posed the v(x) type expectation model,
although he never explicitly addressed the
measurement question.

The above discussion on cardinal utility
was provided because, even today, the dis-
tinction between ov(x) and u(x) is often
unrecognized. Textbooks in economics
and management science occasionally dis-
cuss the NM function as if it only measured

535

intrinsic pleasure under conditions of cer-
tainty. For example, a concave u(x) might
erroneously be interpreted as implying
that equal increments in money (under
certainty) contribute to utility at a de-
creasing rate. Of course, v(x) is confused
here with u(x). Apart from textbook con-
fusions, the above distinction is occasion-
ally not recognized in research designs.
For example, in a study of simulated real-
life decisions, such as whether or not
to enroll in a Ph.D. program, Thomas
Bonoma and Barry R. Schlenker (1978)
considered subjects suboptimal if they did
not maximize 3 p;v(x;); what these au-
thors should have tested, in making such
normative evaluations of risky choices, is
whether 3 p;u(x;) was maximized.

To summarize, v(X¥) was defined as
an interval-scaled utility measure con-
structed under conditions of certainty,
similar to neoclassical utility except that
no ratio properties are presumed. In con-
trast, u (%) is a cardinal NM utility measure
derived from preferences among lotteries.
These two utility functions only need to
be monotone transforms of each other.
Thus when presented with different com-
modity bundles % under certainty, v(x)
and u(X) should yield the same ordering
for a person satisfying the axioms underly-
ing either construct. However, when pre-
sented with risky prospects %; the formally
correct ordering is determined from
E[u(%)], which will generally differ with
that obtained from E[v(%;)] unless v(x) is
a linear transform of u(x). Finally to obtain
an interval ranking of the risky prospects
%;, the E[u(%)] could be inverted into
their certainty equivalents CE; which
might then be interval ranked by comput-
ing v(CE;).

c. The Concept of Probability

Other potentially confusing aspects of

the expected utility model concern the

treatment of probabilities. In the NM ax-
iom system probability is considered a



